注册 会员中心付费方式入会指南

保险专业资源下载网站

0755-21659566
上传资料 在线充值

当前位置:首页 > 教学及精算 > 精算考试 > 正文

非寿险上年试题解答参考(9页).pdf

一、假设某类保险标的损失服从帕累托分布,概率密度函数为
,已知其均值为 100,标准差为 150,试计算 95%的 VaR
值和 CTE 值
解:依题意,知损失变量X
服从参数为和的帕累托分布,且其期望为
100,标准差为 150,所以,有下列方程
(这个公式的后面不是 2.6 ,是 3.6 ,大家注意下,不想算啦, 后面的计算结果,大家懂的,但大体方法是这样,另外,本题的 CED 也可以采用课本的 17 页的原始公式来算,具体根据具体题意)
解得
9425 . 567
95 . 0 ? CTE
所以,95%的 VaR 值为
9425 . 562
和 CTE 值为
9425 . 567
二、设某保险人经营某种车险,对过去所发生的 100 次理赔情况作了记录,其理赔分布如下表:
理赔额(元)   0~100  100~200  200~300  300~400  400~500
次数  43  24  18  10  5
假定该理赔额服从指数分布,试求解指数分布模型参数并在 99.5%的置信水平上检验模型的拟合效果
解:依题意,设理赔额变量为X
,可知,样本平均数为
若假定该理赔额变量服从指数分布,设其参数为,且其密度函数为,由极大似然法估计,可得其参数估计值,所以,根
据得到的参数估计值,可以算出赔款额在某一区间上的理论频率,假设某一区间为
三、某保险公司某险种业务费用如下表,试计算该险种的目标损失率
费用项目  金额(千元)
承保保费  12650
已经保险  11500
佣金  1265
税收、执照费用  278
其他承保费用  632
一般管理费用  690
已发生损失与可分配损失调整费用  8540
已发生不可分配损失调整费用  525
预期利润  500

你可能正需要这些

立即下载 收藏

如何才能下载资料?

资料信息

  • 更新时间:2016-07-20
  • 资料性质:授权资料
  • 文件大小:568KB
  • 下载次数:0
  • 文件格式:PDF
  • 所需圈币:3
  • 收藏次数:0次
分享到:
新手入门
入会指南 付费方式 新手帮助
关于我们
公司简介 法律申明 网站地图
关注我们
官方微信 官方微博 意见反馈
联系我们
联系QQ:564358161 微信咨询:13049846002 客服热线:13049846002

圈中人客服电话

0755-21659566

周一至周五(9:00-18:00)

Copyright © 2009-2019 深圳市圈中人电子商务有限公司 粤ICP备05047908号网站建设:自己人

您是否真的需要安全退出?

确认退出

意见反馈